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INTRODUCTION

Noncommutative approximation and, in particular, approximation in
spaces of operators has received considerable attention recently, as evidenced
in [4-6, 8] and other articles. The purpose of this paper is to characterize the
semi-Chebyshev subspaces of'tf(Jf'), the algebra of compact operators on an
infinite-dimensional Hilbert space. The underlying Hilbert space may be
either real or complex. However, the notation corresponding to a complex
Hilbert space will be used throughout the paper. Our conditions are reminis­
cent of those used in classifying the semi-Chebyshev subspaces of C[a, b]
and Co and lead to the result that there exist Chebyshev subspaces of every
finite dimension in 'tf(Jf'), Jf' separable. An intrinsic characterization of the
finite-dimensional Chebyshev subspaces is then obtained. However, unlike
C[a, b] and Co, there does not seem to be any satisfactory concept of an
interpolation subspace in 'tf(Jf'). In Section 3, the finite-codimensional
proximinal subspaces of 'tf(Jf') are characterized, leading to the interesting
result that, just as in the case of co, there are no finite-codimensional
Chebyshev subspaces in 'tf(Jf'). The final result indicates that all closed
finite-codimensional subspaces of 'tf(Jf') are very strongly non-Chebyshev.
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DEFINITIONS AND NOTATION. Throughout this paper we will use the
representation of the dual space of 'i&'(£') as T .C., the space of trace class
operators. From [9] we note the following pertinent results: any C E 'i&'(£')
may be expressed in its Schmidt expansion as C = L: AnVn ® Un with the
sum over a countable index set, An > 0 for all n, An -+ 0 (if the index set is
infinite), and {un}, {vn} are orthonormal sets. T E T • c. if T E 'i&'(£'), T =

L AnVn ® Un' and L: An < 00; the norm in T.C. is Iii Till == L: An and if
T E T.C. and C E 'i&'(£'), T(C) = L: <TCun ,un), where {un} is any ortho­
normal basis in £'. Let T* denote the adjoint of T, I T I = (T * T)l/2,
aCT) = spectrum of T, and 7TO(T) = the point spectrum of T. Let V be a
closed subspace of a Banach space E and let :Y(T) = {set of best approxi­
mants to T from V}. Then V is semi-Chebyshev, Chebyshev, or proximinal
in E if cardinality gJ(T) is :S;;l, = 1, :;;;:1 for all TEE. The subspace V is said
to be factor reflexive if X/V is reflexive. Also, let VO = {T E E: 0 E G'J(T)},
S(P) = {r/> E E* Iii r/> II = 1, r/>(V) = O} and VeE) = the closed unit ball of
E.

1. EXTRINSIC CHARACTERIZATIONS

The following two theorems should be compared to the theorems
concerning Chebyshev subspaces of C(X) given in [2, 7]. Theorems I and 2
are based on generalizations of the concepts of ex sets and () sets given in [2].
For what follows we assume that V is a closed subspace of'i&'(Yt').

DEFINITION 1. A generalized ex set is' the maximal pair of subspaces
(M, N) C £' X £' such that X (resp. X*) attains its norm on M (resp. N)
for some X ES( yO) (that M and N are subspaces readily follows from the
Schmidt decomposition of X)

DEFINITION 2. A generalized () set is the pair of subspaces

([!((T), [!((T*)) C £' X Yt'

for some T E S(P) that attains its norm on S('i&'(£')).
We say that C is zero on a generalized ex set if C(M) = 0 = C*(N). (C

being 0 on a generalized () set has the analogous meaning.)

THEOREM 1. V C 'i&'(£') is semi-Chebyshev if and only if 0 is the only
element of V that vanishes on a generalized ex-set.

For the proof we need the following lemma:
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LEMMA 1. Let Me ff' be the subspace on which X E '1&'(£) attains its
norm and suppose X(M) = N; then X(M-L) C N-L, where M-L is the orthogonal
complement ofM.

Proof of lemma. Write X in its Schmidt expansion, i.e., X = L AnVn @ Un'
Then M = span{un I An = AI} and the result is clear by the form of the expan­
sion.

Proof of theorem. (<=) This implication can be obtained by the same
argument as in [2], applied both to the operators and to their adjoints.

( =?) Suppose 0 =1= C E V is zero on the generalized ex set associated with X.
Thus ~(C) C (ker C*)-L C N-L, Me ker C, and II X IM.L II = Ii X II - E for
some E > O. We may assume that II C II ~ E. By Lemma 1, for any u E £, we
may write U = UI + U2 , UI E M, and U2 E M-L and we have:

II(X - C) U 11 2 = II(X - C) U I + (X - C) u2 11 2 = II XUI 11 2 + II(X - C) u21!2.

Thus, II X - C II = max{11 X 1M II , II(X - C)M.L II} = II X II. Hence, C =1= 0 is
also a best approximant to X. Q.E.D.

Before proving our next theorem we need the following:

LEMMA 2. T E T.C. attains its norm on X E S('I&'(£)) if and only if cor­
responding to the Schmidt decomposition of T = L~ Anvn @ Un, we have
X(v n) = Un, n = 1'00" N.

Proof (<=) This is a simple computation.
( =?) Because the trace class operators that attain their norm are exactly

the finite-rank operators, we have the Schmidt decomposition

N

T = L Anvn @ Un .
I

Therefore,

N N N

III Till = LAn = T(X) = L An(Xvn , un) ~ LAn.
1 I I

It is evident that the above inequality is an equality only if X(vn ) = Un,

n = 1'00" N. Q.E.D.

THEOREM 2. A subspace V C '1&'(£) is semi-Chebyshev if and only if 0 is
the only element of V that vanishes on a generalized eset.

Proof Suppose there exists a nonzero C E V such that C vanishes on a
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generalized e set corresponding to some T. Since T attains its norm, the
Schmidt expansion of T has the form

N

T = 2: Anvn @ Un'
1

Consider the operator X = L~ Un @ Un' Since T(X) = I = II X II, by
[10, p. 18] we have that X E VO. Now note that the ex set associated with X is
(span{vn}f, span{un}f) = (~(T), ~(T*)). Since C vanishes on the generalized
Bset associated with T, C vanishes on the generalized ex set associated with X;
hence, by Theorem I, V is not semi-Chebyshev.

To prove the converse, suppose V is not semi-Chebyshev. Then by [10,
p. 105], there exists T E S(V-L), X E S(VO), and °eft C E V such that T(X) =
II XII = II X - C!I = I. By Lemma 2, if T has the form T = L~ Anvn @ Un,
we have X(vn) = Un and (X - C)(v n) = Un' Hence, C(vn) = °n = I,... , N,
i.e., C(~(T)) = 0. Since

T*(X*) = II X* II = II x* - C* II = I,

we have C*(~(T*)) = 0, and thus, C vanishes on the generalized B set
associated with T. Q.E.D.

It is interesting to note that every generalized eset is a generalized ex set
and every generalized ex set contains a generalized B set. The first statement
follows from the proof of the first implication in Theorem 2. For the second
statement, let (M, N) be a generalized ex set corresponding to X. Thus, there
exists aTE S(V-L) so that T(X) = Ii X II = 1. If T = L~ Anvn @ Un, then
X(v n) = Un for all n by Lemma 2. Thus, X attains its norm on ~(T) implying
~(T) C M. Similarly ~(T*) C N, proving the statement.

As an application of our previous theorems, we have:

THEOREM 3. Let £' be a separable Hilbert space. Then 'i&'(£') has N­
dimensional Chebyshev subspaces for each positive integer N.

Proof Let N be fixed and let {ei}:l be an orthonormal basis in £'.
Define Ci = L:~l (lin) eNn+i ® en ,j = 1,... , N. Evidently, Ci is a compact
operator for alljand O¢:7TO(Ci),j= I, ... ,N. Let VN=span{Ci}~l' Since
~(Ci) 1- ~(Ci) for i eft j, no linear combination of the Ci has °in its point
spectrum. By Theorem 1, VN is Chebyshev.

2. INTRINSIC CHARACTERIZATIONS

There is a very simple intrinsic characterization of the one-dimensional
Chebyshev subspaces of'i&'(£').
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THEOREM 4. Given a nonzero C E ~(£'), V = span C is a Chebyshev
subspace of~(£') if and only if 0 t/= 7TO(C) n 7TO(C*).

Proof Suppose V is not Chebyshev. By Theorem I, there exists
o 7'= C E V, which vanishes on a generalized (X set. Hence, 0 E 7To(C) n 7TO( C*).

Now suppose 0 E 7TO(C) n 7TO(Cof'). Select unit vectors u, v such that C(v) =
0= C*(u). Define T = v ® U. Since T(C) == <CV, u) = 0, TES(V-L) and C
is zero on the generalized eset associated with T, then V is not Chebyshev by
Theorem 2. Q.E.D.

We now give an intrinsic characterization of the finite-dimensional
Chebyshev subspaces of ~(£').

THEOREM 5. An N-dimensional subspace V C ~(£') is Chebyshev if and
only if there does not exist a nonzero C E V, C; E V, j = I, ... , N - I, and two
sets A and B each consisting ofm orthonormal elements so that

(i) span(C, Cl , ... , CN-l) = V

(ii) OF A = {VI, ... , Vm} C ker C,

(iii) the (N - I) X m matrix

B = {ul , ... , urn} C ker C*

has linearly dependent columns.

Proof Suppose V is not Chebyshev. By Theorem 2, there exists a nonzero
C E V that vanishes on the generalized eset associated with some T E S(V-L),
where T = L~ AnVn ® Un and m is finite since T attains its trace norm on
S(~(£')). Pick Cl , ... , CN- l so that span{C, Cl , ... , CN-l} = V. Let A =
{VI'"'' vm ) and B = {ul , ... , urn}. Since C vanishes on the generalized e set
associated with T, ACker C and Be ker C*. Also, since T E S(VL

),

1n m 1n

0= T(C;) = L: <TC;Vi ' v;) = I <C;Vi , T*Vi> = I Ai<CjVi, U,\.
i=l i,--=l i=l

Thus, if M; denotes the jth column of M, we have AlMl + ... + ArnMrn = O.
Conversely, suppose there exists a nonzero C E V so that CV; = 0 = C*u; ,

j = I, ... , m, and AlMl + ... + AmMm = O. Without loss of generality,
assume L~~l I Ak I = 1. If Ak = heWk in its polar decomposition, set VkI =

eiekvk; thus, we have PlMl + ... + PmMm = 0 with Pk > 0 for all k. Now
define

In

T = L: PkVk
l ® Uk .

1
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It is easy to check that T E S(V.l) and that C is zero on the associated
generalized Bset. By Theorem 2, V is not Chebyshev. Q.E.D.

COROLLARY 1. Let V be an N-dimensional subspace of'(}(Yl') and suppose
there exists a nonzero C E V so that dim ker C and dim ker C* ?: N. Then V
is not Chebyshev.

COROLLARY 2. If Yl' is not separable, ,(}(Yl') has no finite-dimensional
Chebyshev subspaces.

Proof The result follows immediately from the preceding corollary and
the Schmidt decomposition of a compact operator.

Many times, an intrinsic characterization of the finite-dimensional
Chebyshev subspaces of a space is obtained by showing that these subspaces
are interpolating. However, it will be shown that this is not the case in
,(}(Yl').

DEFINITION 3. An N-dimensional subspace V of a Banach space E is an
interpolating subspace if for every linearly independent set {Q1 ,... , QN} C
extreme points of U(E*) and every set {a1 ,..., aN} of scalars, there is a unique
y EO V for which Qi(Y) = ai' i = I, ... , N.

It is well known [1] that the finite-dimensional Chebyshev subspaces of
C(X) and Co are precisely the interpolating subspaces of those spaces. An
analogous situation might be hoped for in ,(}(Yl'). In [11], Singer characterized
the extreme points of the dual unit ball of any tensor product Banach space
normed with the inductive limit topology. For completeness, we give a
simple proof of the characterization of the extreme points of the unit ball of
T.C. which is a special case of Singer's theorem.

THEOREM 6. The extreme points of the unit ball of T.C., denoted by ff, are
the rank one operators.

Proof Suppose ![1 T 1,1 = I and rank T?: 2. Then T = L AnVn ® Un
with I > Al ?: A2 > O. Pick € > 0 so that Al + € < I and A2 - € > O.
Consider

T1 = (AI + €) VI ® U1 + (A2 - €) V2 ® U2 + I AnVn ® Un
n~3

and

T2 = (AI - €) VI ® U1 + (A2 + €) V2 ® U2 + I AnVn ® Un .
n~3

Then 111 T1 111 = III T2 111 = I and T = KT1 + T2) so that T ¢ ff.
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Conversely, let T = v ® ii be a rank one operator and II U II = II v
III Till = I. Suppose there exists TI and T2 such that III TI III = III T2 III = 1 and
T ~~ l(TI + T2). Now we have

I = T(u ® v) = (u ® v)(T) :s:;: II u ® v III( II ~I II ~ II ~211 ) :s:;: 1.

Since II Ti II :s:;: III Ti III = I, i = 1,2, it follows that I = 1,1 TIll: = il TI II.
Thus, Tis a rank I operator by the Schmidt decomposition of T. By Lemma 2,
TI(u) = v, hence, TI = v ® Ii = T. Similarly, it follows that T2 = T. Q.E.D.

PROPOSITION I. There exists no finite-dimensional interpolating subspace
of C€(£').

Proof Let V be an N-dimensional subspace of C€(£') and let 0 =I=- K E V
with Schmidt decomposition K = L:;:I A;v; ® ii j • Without loss of generality,
assume m ?: N + 1. Let

k = 1'00" N.
Thus,

I <TlcKUj , U,) = I <KUj , Tic *Uj) = <1\, VIc+1) = 0,
j

for each k.

such that

Thus, T" annihilates K for each k; and hence, V is not interpolating. Q.E.D.
Proposition I shows that C€(£') is in stark contrast with C(X) and co,

which both have interpolating subspaces.
It is clear that C€(£') fails to have interpolating subspaces because Iff has

"too many" elements. Various attempts to find an analogous concept of
interpolating subspace in C€(£') proved futile.

3. CHEBYSHEV SUBSPACES OF FINITE CoDIMENSION

To characterize the Chebyshev subspaces of finite codimension in C€(£'),
we first characterize the proximinal subspaces of C€(£'). The following
theorem is based on two well-known results of Garkavi [10]:

(a) A factor-reflexive linear subspace G of a normed linear space E is
proximinal if and only if for each

(/) E (G-L)*, j Y E E

(/)(1) = fey), VfE G-L
and

II (/) II = II y Ii .
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(b) If G is proximinal and factor reflexive, f E G.L attains its norm on
the unit ball of E.

THEOREM 8. If V C '6'(£) is a subspace of finite codimension, then V is
proximinal in '6'(£) ifand only if V.L has a basis offinite-rank operators.

Proof If V is proximinal, then by (b) above, every T E V.L attains its
norm implying every T E V.L is of finite rank by Lemma 2.

Conversely, suppose the elements of a basis of V.L are of finite rank. Let
He £ be the smallest subspace of £ containing the ranges of the elements
of a basis of V.L and the ranges of their adjoints, i.e., H = span{ge(T),
ge(T*): T E V.L}. Note that dim H < r:J:J. Thus, any T E V.L may be written as
T = t ® 0 where t is an operator matrix in T.c.(H) and Iii T = III till.

Since V.L may be identified isometrically with a subspace of T.c.(H), each
S E (V.L)* may be identified norm preservingly with an S E (T.c.(H»*. Bya
theorem of Schatten [9], f!8(H) = (T.c.(H»*. Thus, given S E (P)* with
corresponding S in f!8(H) and given any T E V.L with corresponding t in
T.c.(H), we may write

SeT) = trace (St) = trace (tS) = T(S ® 0),

Since S ® 0 has finite rank, S ® 0 E '6'(£), and

I S = IS II$(H) = II S ® 0 j!~CJF)' Q.E.D.

COROLLARY. '6'(£) has no Chebyshev subspace offinite codimension.

Proof Without loss of generality, assume V is proximinal in '6'(£) and of
finite codimension. Let H be as in the proof of Theorem 8, T E S(V.L), and
u E H.L, II u II = 1. Define C = u ® u, CE S(V). Clearly C = 0 on the gene­
ralized () set associated with Tso Vis not Chebyshev by Theorem 2. Q.E.D.

Our last theorem shows to what degree closed subspaces of finite codimen­
sion are non-Chebyshev. In what follows, geT) will denote the set of best
approximants (b.a.'s) to T from V.

THEOREM 9. Let V C '6'(£) be any closed subspace of finite codimension
and T E '6'(£)\ V. Then g(T) = 0 or g(T) is of infinite dimension.

Proof Let K be a b.a. of T from V. We construct an infinite-dimensional
set of Cn's E V311 T - KII = II T - (K + Cn)ll. Since T - K is a nonzero
compact operator a(1 T - K I) and a(I(T - K)*I) contain at least two points
(0 and II T - K II). Let £(A) and F(A) be the corresponding spectral resolutions
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of I T - K I and I(T - K)* I . Now pick °< b < II T - KII. Then E[O, b]
and F[O, b] are nonzero spectral projections and it is easy to see that

E£7 = E[O, b] £7, F£7 = F[O, b] £7

are finite-codimensional subspaces of £7. Let

.#I = {S E ~(£7): S£7 C F£7, SCI - E) £7 = OJ.

It is clear that.#l is an infinite-dimensional subspace of ~(£7). Since V is of
finite codimension pick an infinite-dimensional set Cn E V n.#l, Cn =1= 0,
II Cn II ~ € where b + € ~ II T - K II . Now for such Cn , since F(T - K) =

(T - K)E and (I - F)(T - K) = (T - K)(I - E), we have

II T - [K + Cn]l:

= II F[T - (K + Cn)] E + F[T - (K + Cn)](I - E)

+ (I - F)[T - (K + Cn)] E + (I - F)[T - (K + Cn)](I - E)II
= II F[T - (K + Cn)] E + F(l - F)[T - K] + (I - F)F[T - K]

+ (I - F)[T - K](I - E)I'

= max{11 F[T - K] E + FCnE ,I,(I - F)[T - K](I - EYiJ

= max{b + €, Ii T - K IJ = I T - K II . Q.E.D.
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